curl --request POST \
--url https://www.chenyu.cn/api/open/v2/instance/create_by_pod \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '
{
"pod_uuid": "<string>",
"pod_tag": "<string>",
"gpu_uuid": "<string>",
"gpu_nums": 123
}
'{
"code": 123,
"msg": "<string>",
"data": {
"instance_uuid": "<string>",
"status": 123,
"title": "<string>",
"create_time": 123,
"start_time": 123,
"save_image_status": 123,
"charging_type": 123,
"shutdown_regular": {
"shutdown_time": 123,
"enable": true
},
"image_uuid": "<string>",
"image_name": "<string>",
"image_tag": "<string>",
"gpu_uuid": "<string>",
"gpu_name": "<string>",
"gpu_nums": 123
}
}使用指定的Pod创建GPU实例
curl --request POST \
--url https://www.chenyu.cn/api/open/v2/instance/create_by_pod \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '
{
"pod_uuid": "<string>",
"pod_tag": "<string>",
"gpu_uuid": "<string>",
"gpu_nums": 123
}
'{
"code": 123,
"msg": "<string>",
"data": {
"instance_uuid": "<string>",
"status": 123,
"title": "<string>",
"create_time": 123,
"start_time": 123,
"save_image_status": 123,
"charging_type": 123,
"shutdown_regular": {
"shutdown_time": 123,
"enable": true
},
"image_uuid": "<string>",
"image_name": "<string>",
"image_tag": "<string>",
"gpu_uuid": "<string>",
"gpu_name": "<string>",
"gpu_nums": 123
}
}Show data
1: 上传中2: 上传成功3: 上传失败import requests
from datetime import datetime
url = "https://www.chenyu.cn/api/open/v2/instance/create_by_pod"
headers = {
"Authorization": "Bearer your_api_key",
"Content-Type": "application/json"
}
data = {
"pod_uuid": "pod_12345678-1234-1234-1234-123456789012",
"pod_tag": "v2.0",
"gpu_uuid": "gpu_87654321-4321-4321-4321-210987654321",
"gpu_nums": 1
}
response = requests.post(url, headers=headers, json=data)
result = response.json()
if result['code'] == 0:
instance = result['data']
create_time = datetime.fromtimestamp(instance['create_time'])
print(f"实例创建成功!")
print(f"实例UUID: {instance['instance_uuid']}")
print(f"实例名称: {instance['title']}")
print(f"GPU名称: {instance['gpu_name']}")
print(f"GPU数量: {instance['gpu_nums']}")
print(f"创建时间: {create_time.strftime('%Y-%m-%d %H:%M:%S')}")
if instance['server_url']:
print("服务访问地址:")
for url in instance['server_url']:
print(f" - {url}")
else:
print(f"创建失败: {result['msg']}")
{
"code": 0,
"msg": "success",
"data": {
"instance_uuid": "inst_12345678-1234-1234-1234-123456789012",
"status": 1,
"title": "PyTorch深度学习实例",
"create_time": 1703145600,
"start_time": 1703145660,
"save_image_status": 2,
"charging_type": 1,
"shutdown_regular": {
"shutdown_time": 1703232000,
"enable": true
},
"image_uuid": "img_87654321-4321-4321-4321-210987654321",
"image_name": "PyTorch 2.0 环境",
"image_tag": "v2.0",
"gpu_uuid": "gpu_87654321-4321-4321-4321-210987654321",
"gpu_name": "NVIDIA RTX 4090",
"gpu_nums": 1
}
}